Current approaches to the use of artificial intelligence in translation: a review
Çeviri Alanında Yapay Zekâ Kullanımına Dair Güncel Yaklaşımlar: Bir Derleme
This review article aims to comprehensively examine current approaches and trends in the use of artificial intelligence (AI) in the field of translation. To this end, the abstracts of 50 articles covering the period 2018-2025, obtained by searching the Web of Science database by using the keywords “machine translation,” “AI in translation,” and “neural translation,” were subjected to content analysis. Additionally, a current literature review was conducted to incorporate the latest developments in the field. The study identified key themes such as the dominance of neural machine translation (NMT) technologies, challenges in translation quality assessment, the growing importance of AI literacy in translation education, and ethical and professional issues arising from the use of AI. The research highlights the transformative impact of artificial intelligence on translation practice and theory and provides a framework for future research directions. This study was conducted to draw attention to the fact that artificial intelligence is also effectively used for translation purposes and that this field is highly important research topic for philology and translation studies.
Bu derleme makalesi, çeviri alanında yapay zekâ (AI) kullanımına ilişkin güncel yaklaşımları ve eğilimleri kapsamlı bir şekilde incelemeyi amaçlamaktadır. Bu doğrultuda, Web of Science veri tabanında "machine translation", "AI in translation" ve "neural translation" anahtar kelimeleriyle yapılan tarama sonucu elde edilen ve 2018-2025 yıllarını kapsayan 50 adet makalenin özeti içerik analizine tabi tutulmuştur. Ayrıca, alandaki en son gelişmeleri dahil etmek amacıyla güncel literatür taraması yapılmıştır. Analizler sonucunda, sinirsel makine çevirisi (NMT) teknolojilerinin baskınlığı, çeviri kalitesi değerlendirmesindeki zorluklar, çeviri eğitiminde yapay zekâ okuryazarlığının artan önemi ve yapay zekâ kullanımının getirdiği etik ve mesleki sorunlar gibi ana temalar belirlenmiştir. Araştırma, yapay Zekânın çeviri pratiği ve teorisi üzerindeki dönüştürücü etkisini vurgulamakta ve gelecekteki araştırma yönelimleri için bir çerçeve sunmaktadır. Bu çalışma, yapay zekânın çeviri amacıyla da etkin bir şekilde kullanıldığına ve bu alanın filoloji ve çeviribilim için son derece önemli bir araştırma konusu olduğuna dikkat çekmek amacıyla gerçekleştirilmiştir.
Badue, C., et al. (2021). Self-driving cars: A survey. Expert Systems with Applications, 165, 113816.
Baker, M. (2011). Corpus linguistics and translation studies—implications and applications. In Text and technology: In honour of John Sinclair (pp. 233-250). John Benjamins Publishing Company.
Bassnett, S. (2013). Translation studies. Routledge.
Byrnes, J. (2006). Technical Translation: Usability Strategies for Translating Technical Documentation. Springer.
Cao, L. (2022). AI in finance: Challenges, techniques, and opportunities. ACM Computing Surveys, 55(3), 1-38.
Chen, L., et al. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264-75278.
Cronin, M. (2013). Translation in the digital age. Routledge.
Díaz-Cintas, J. (2009). Audiovisual translation: Language transfer on screen. Palgrave Macmillan.
Federici, F. M., et al. (2019). Translation and interpreting in times of crisis. Routledge.
Frey, C. B., & Llanos-Paredes, P. (2025). Lost in translation: AI’s impact on translators and foreign language skills. CEPR. https://cepr.org/voxeu/columns/lost-translation-ais-impact-translators-and-foreign-language-skills
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Holmes, J. S. (1975). The name and nature of translation studies. Translation studies section, department of general literary studies, University of Amsterdam.Kenny, D. (2020). Machine translation for everyone. Language Science Press.
Koehn, P. (2020). Neural machine translation. Cambridge University Press.
Laviosa, S. (2002). Corpus-based translation studies. Rodopi.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
Malmkjaer, K. (2020). Translation and creativity. Routledge.
Moorkens, J. (2020). Ethics and machine translation. In The Routledge handbook of translation and ethics (pp. 320-334). Routledge.
Munday, J. (2016). Introducing translation studies (4th ed.). Routledge.
O'Hagan, M. (2019). The Routledge handbook of translation and technology. Routledge.
Pöchhacker, F. (2004). Introducing interpreting studies. Routledge.
Rogers, A., et al. (2020). A primer on neural network models for natural language processing. Journal of Artificial Intelligence Research, 57, 345-420.
Russell, S., & Norvig, P. (2020). Artificial intelligence: A modern approach (4th ed.). Pearson.
Saldanha, G., & O'Brien, S. (2021). Research methodologies in translation studies. Routledge.
Soysal, F. (2023). Enhancing Translation Studies with Artificial Intelligence (AI): Challenges, Opportunities, and Proposals. Karamanoğlu Mehmetbey Üniversitesi Uluslararası Filoloji ve Çeviribilim Dergisi, 5(2), 177-191. https://dergipark.org.tr/en/pub/ufced/article/1402649
Stanford HAI. (2025). The 2025 AI Index Report. Stanford University. https://hai.stanford.edu/ai-index/2025-ai-index-report
Topol, E. J. (2019). Deep medicine: How artificial intelligence can make healthcare human again. Basic Books.
Toral, A., et al. (2018). Attaining the unattainable? Reassessing claims of human parity in neural machine translation. Proceedings of the Third Conference on Machine Translation, 113-123.
Toury, G. (1995). Descriptive translation studies and beyond. John Benjamins.
Vaswani, A., et al. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30, 5998-6008.
Venuti, L. (2008). The translator's invisibility (2nd ed.). Routledge.
Wang, N., et al. (2024). Scaling neural machine translation to 200 languages. Nature, 630, 408-415. https://www.nature.com/articles/s41586-024-07335-x
Wolf, M., & Fukari, A. (Eds.). (2007). Constructing a sociology of translation. John Benjamins.
Zhang, J., & Doherty, S. (2025). Investigating novice translation students’ AI literacy in translation education. The Interpreter and Translator Trainer.

Copyright (c) 2025 Ebru Seven Topkaya
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who will submit works to the Journal of Western European Social Sciences Research; You are required to fill out the copyright transfer form. To fill out the form, fill in and approve the content below.
The "Western European Journal of Social Science Studies" provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. The author(s) and copyright holder(s) acknowledge that all users have the right to free access to articles published in this Journal. In order to protect the copyrights and rights of the Journal licensed under the Creative Commons License, authors of accepted articles agree to share their works with others with full approval of the works.
Downloads
Article Information
- Article Type Articles
- Submitted 21 September 2025
- Accepted 15 October 2025
- Published 27 November 2025
- Issue Vol. 2 No. 3 (2025): Volume 2 Issue 3 (2025): West European Journal of Social Sciences
- Section Articles







